相关习题
 0  256537  256545  256551  256555  256561  256563  256567  256573  256575  256581  256587  256591  256593  256597  256603  256605  256611  256615  256617  256621  256623  256627  256629  256631  256632  256633  256635  256636  256637  256639  256641  256645  256647  256651  256653  256657  256663  256665  256671  256675  256677  256681  256687  256693  256695  256701  256705  256707  256713  256717  256723  256731  266669 

科目: 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155 cm到195 cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195].如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

)估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数;

)求第六组、第七组的频率并补充完整频率分布直方图(用虚线标出高度);

(III)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为x、y,求事件“|x-y|≤5”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出的值;

(2)利用合情推理的“归纳推理思想”,归纳出之间的关系式,并根据你得到的关系式求出的表达式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知M(x0,y0)是椭圆C:=1上的任一点,从原点O向圆M:(x-x0)2+(y-y0)2=2作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;

(2)试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).

(1)求曲线E的方程;

(2)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值?若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:

(1)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;

(2)根据以上数据完成下面的列联表:在犯错概率小于的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.

(1)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;

(2)若直线MF与抛物线C交于A,B两点,求△OAB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求和函数的极值;

(2)若关于的方程有3个不同实根,求实数的取值范围;

(3)直线为曲线的切线,且经过原点,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆 过椭圆 的短轴端点, 分别是圆与椭圆上任意两点,且线段长度的最大值为3.

(1)求椭圆的方程;

(2)过点作圆的一条切线交椭圆两点,求的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.

(1)若AP⊥AQ,证明:直线PQ过定点,并求出定点的坐标;

(2)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线和直线交于点.以为起点,再从曲线上任取两个点分别为终点得到两个向量,记这两个向量的数量积为.若去九寨沟;若去泰山;若去长白山; 去武夷山.

(1)若从这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和去泰山的概率;

(2)按上述方案,小明在曲线上取点作为向量的终点,则小明决定去武夷山.点在曲线上运动,若点的坐标为,求的最大值.

查看答案和解析>>

同步练习册答案