科目: 来源: 题型:
【题目】设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-)的大小顺序是:( )
A. f(-)>f(3)>f(-2) B. f(-) >f(-2)>f(3)
C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足asinA-csinC=b(sinA-sinB).
(Ⅰ)求角C的大小;
(Ⅱ)若边长c=4,求△ABC的周长最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出四个命题
(1)若sin2A=sin2B,则△ABC为等腰三角形;
(2)若sinA=cosB,则△ABC为直角三角形;
(3)若sin2A+sin2B+sin2C<2,则△ABC为钝角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.
以上正确命题的是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知=(sinx,cosx),=(cosφ,sinφ)(|φ|<).函数
f(x)= 且f(-x)=f(x).
(Ⅰ)求f(x)的解析式及单调递增区间;
(Ⅱ)将f(x)的图象向右平移单位得g(x)的图象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;
(II)设函数F(x)=-x[g(x)+x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;
(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3-3ax-1,a≠0.
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于函数①f(x)=4x+-5,②f(x)=|log2 x|-()x,③f(x)=cos(x+2)-cosx,判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1处有极值10,求a,b的值;
(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com