相关习题
 0  256831  256839  256845  256849  256855  256857  256861  256867  256869  256875  256881  256885  256887  256891  256897  256899  256905  256909  256911  256915  256917  256921  256923  256925  256926  256927  256929  256930  256931  256933  256935  256939  256941  256945  256947  256951  256957  256959  256965  256969  256971  256975  256981  256987  256989  256995  256999  257001  257007  257011  257017  257025  266669 

科目: 来源: 题型:

【题目】原命题:“为两个实数,若,则中至少有一个不小于1,下列说法错误的是

A.逆命题为:若中至少有一个不小于1,为假命题

B.否命题为:若都小于1 ,为假命题

C.逆否命题为:若都小于1 ,为真命题

D.”是“中至少有一个不小于1”的必要不充分条件

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为偶函数.

(1)求实数的值;

(2)记集合 ,判断的关系;

(3)当 (m>0,n>0)时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设正项数列{an}的前n项和为Sn , 且满足4Sn=an2+2an﹣3(n∈N*),则a2016=(
A.4029
B.4031
C.4033
D.4035

查看答案和解析>>

科目: 来源: 题型:

【题目】若无穷数列满足:恒等于常数,则称具有局部等差数列.

1)若具有局部等差数列,且,求

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,判断是否具有局部等差数列,并说明理由;

3)设既具有局部等差数列,又具有局部等差数列,求证具有局部等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有,当时,有

(1)求f(1)的值;

(2)判断f(x)的单调性并加以证明;

(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是偶函数.

1)求的值;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量 =(﹣1, ), =(cosA,sinA).若 ,且acosB+bcosA=csinC,则角A,B的大小分别为( )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,分别根据下列条件解三角形,其中有两个解的是(
A.a=7,b=14,A=30°
B.a=20,b=26,A=150°
C.a=30,b=40,A=30°
D.a=72,b=60,A=135°

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(1)若不等式恒成立,求的值;

(2)若内有两个极值点,求负数的取值范围;

(3)已知若对任意实数总存在实数使得成立求正实数的取值集合.

查看答案和解析>>

科目: 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

同步练习册答案