科目: 来源: 题型:
【题目】已知函数f(x)=4cosωxsin(ωx+
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,
]上的单调性;
(3)当x∈[0,
]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年被业界称为
(虚拟现实技术)元年,未来
技术将给教育、医疗、娱乐、商业、交通旅游等多领域带来极大改变,某
教育设备生产企业有甲、乙两类产品,其中生产一件甲产品需
团队投入15天时间,
团队投入20天时间,总费用10万元,甲产品售价为15万元/件;生产一件乙产品需
团队投入20天时间,
团队投入16天时间,总费用15万元,乙产品售价为25万元/件,
、
两个团队分别独立运作.现某客户欲以不超过200万元订购该企业甲、乙两类产品,要求每类产品至少各3件,在期限180天内,为使企业总效益最佳,则最后交付的甲、乙两类产品数之和为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC=45°,则塔AB的高是( )
![]()
A. 10m B. 10
m C. 10
m D. 10
m
查看答案和解析>>
科目: 来源: 题型:
【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn=
,求数列{bn}的前项的和Tn.
(3)是否存在自然数m,使得
<Tn<
对一切n∈N*恒成立?若存在,求出m的值;
若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】动点
在圆
:
上运动,定点
,线段
的垂直平分线与直线
的交点为
.
(Ⅰ)求
的轨迹
的方程;
(Ⅱ)过点
的直线
,
分别交轨迹
于
,
两点和
,
两点,且
.证明:过
和
中点的直线过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:
(1)2sinBcosC﹣sin(B﹣C)的值;
(2)若a=2,求△ABC周长的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示. ![]()
(1)求f(x)的表达式;
(2)在△ABC中,f(C+
)=﹣1且
<0,求角C.
查看答案和解析>>
科目: 来源: 题型:
【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:
单价x(元) | 18 | 19 | 20 | 21 | 22 |
销量y(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和y对x的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,
为了获得最大利润,该单元卷的单价应定为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品.为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
,如下表所示:
![]()
已知
.
(1)求出
的值;
(2)已知变量
,
具有线性相关关系,求产品销量
(件)关于试销单价
(元)的线性回归方程
;
(3)用
表示用正确的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取2个,求抽取的2个销售数据中至少有1个是“好数据”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com