相关习题
 0  257005  257013  257019  257023  257029  257031  257035  257041  257043  257049  257055  257059  257061  257065  257071  257073  257079  257083  257085  257089  257091  257095  257097  257099  257100  257101  257103  257104  257105  257107  257109  257113  257115  257119  257121  257125  257131  257133  257139  257143  257145  257149  257155  257161  257163  257169  257173  257175  257181  257185  257191  257199  266669 

科目: 来源: 题型:

【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是(
①平均数
②标准差S≤2;
③平均数 且标准差S≤2;
④平均数 且极差小于或等于2;
⑤众数等于1且极差小于或等于1.
A.①②
B.③④
C.③④⑤
D.④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|< )图象相邻对称轴的距离为 ,一个对称中心为(﹣ ,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目: 来源: 题型:

【题目】在四个函数y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π为周期,在 上单调递增的偶函数是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

查看答案和解析>>

科目: 来源: 题型:

【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.

(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知中,角所对的边分别是,且点,动点满足为常数且),动点的轨迹为曲线.

(Ⅰ)试求曲线的方程;

(Ⅱ)当时,过定点的直线与曲线交于两点,是曲线上不同于的动点,试求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目: 来源: 题型:

【题目】某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.

(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)

运行
次数n

输出y的值
为1的频数

输出y的值
为2的频数

输出y的值
为3的频数

30

14

6

10

2100

1027

376

697

乙的频数统计表(部分)

运行
次数n

输出y的值
为1的频数

输出y的值
为2的频数

输出y的值
为3的频数

30

12

11

7

2100

1051

696

353

当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.

查看答案和解析>>

科目: 来源: 题型:

【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:

(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.

注:①同一组数据用该区问的中点值作代表,计算得

②若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】在等比数列中, ,且的等比中项为.

1)求数列的通项公式;

2)设,数列的前项和为,是否存在正整数,使得对任意恒成立?若存在,求出正整数的最小值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是梯形.四边形是矩形.且平面平面是线段上的动点.

(Ⅰ)试确定点的位置,使平面,并说明理由;

(Ⅱ)在(Ⅰ)的条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案