科目: 来源: 题型:
【题目】已知向量
=(
sin
,1),
=(cos
,cos2
).
(Ⅰ)若
=1,求cos(
﹣x)的值;
(Ⅱ)记f(x)=
,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,梯形
中,
,
,
,
,
和
分别为
与
的中点,对于常数
,在梯形
的四条边上恰好有8个不同的点
,使得
成立,则实数
的取值范围是( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
的定义域为
,如果存在正实数
,使得对任意
,都有
,且
恒成立,则称函数
为
上的“
的型增函数”,已知
是定义在
上的奇函数,且在
时,
,若
为
上的“2017的型增函数”,则实数
的取值范围是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图为一简单组合体,其底面ABCD为正方形,棱PD与EC均垂直于底面ABCD,PD=2EC,N为PB的中点,求证: ![]()
(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知直线2x+y﹣8=0与直线x﹣2y+1=0交于点P.
(1)求过点P且平行于直线4x﹣3y﹣7=0的直线11的方程;(结果都写成一般方程形式)
(2)求过点P的所有直线中使原点O到此直线的距离最大的直线12的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
(
)
(Ⅰ)讨论
的单调性;
(Ⅱ)证明:当
时,函数
(
)有最小值.记
的最小值为
,求
的值域;
(Ⅲ)若
存在两个不同的零点
,
(
),求
的取值范围,并比较
与0的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知f(x)=kx+b的图象过点(2,1),且b2﹣6b+9≤0
(1)求函数f(x)的解析式;
(2)若a>0,解关于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com