科目: 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)(x∈R)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式并求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】有下列四个说法:
①若函数f(x)=asinx+cosx(x∈R)的图象关于直线x=
对称,则a=
;
②已知向量
=(1,2),
=(﹣2,m),若
与
的夹角为钝角,则m<1;
③当
<α<
时,函数f(x)=sinx﹣logax有三个零点;
④函数f(x)=xsinx在[﹣
,0]上单调递减,在[0,
]上单调递增.
其中正确的是(填上所有正确说法的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函数f(x)可能是( )
A.f(x)=2sin
x
B.f(x)=2cos2
x
C.f(x)=2cos2
x
D.f(x)=2cos
x
查看答案和解析>>
科目: 来源: 题型:
【题目】园林管理处拟在公园某区域规划建设一半径为
米圆心角为
(弧度)的扇形景观水池,其中
为扇形
的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过
万元,水池造价为每平方米
元,步道造价为每米
元.
(1)当
和
分别为多少时,可使广场面积最大,并求出最大值;
(2)若要求步道长为
米,则可设计出水池最大面积是多少.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
,
),且对任意
,都有
.
(Ⅰ)用含
的表达式表示
;
(Ⅱ)若
存在两个极值点
,
,且
,求出
的取值范围,并证明
;
(Ⅲ)在(Ⅱ)的条件下,判断
零点的个数,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每年每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
,
;两小时以上且不超过三小时还车的概率为
,
;两人租车时间都不会超过四小时.
(1)求甲、乙都在三到四小时内还车的概率和甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<
.
(1)若cos
cosφ﹣sin
sinφ=0.求φ的值;
(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于
,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象象左平移m个单位所对应的函数是偶函数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为
的正方形,侧面![]()
底面
,且
,
、
分别为
、
的中点.
![]()
(1)求证:
平面
;
(2)求证:面
平面
;
(3)在线段
上是否存在点
,使得二面角
的余弦值为
?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com