相关习题
 0  257548  257556  257562  257566  257572  257574  257578  257584  257586  257592  257598  257602  257604  257608  257614  257616  257622  257626  257628  257632  257634  257638  257640  257642  257643  257644  257646  257647  257648  257650  257652  257656  257658  257662  257664  257668  257674  257676  257682  257686  257688  257692  257698  257704  257706  257712  257716  257718  257724  257728  257734  257742  266669 

科目: 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+ csinA.
(1)求角A的大小;
(2)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱中, 为线段的中点.

(Ⅰ)求证:

(Ⅱ)若直线与平面所成角的正弦值为,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[﹣π,π]上的最大值和最小值及取得最值时x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为(
A.8
B.4
C.3
D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ,设F(x)=x2f(x),则F(x)是(
A.奇函数,在(﹣∞,+∞)上单调递减
B.奇函数,在(﹣∞,+∞)上单调递增
C.偶函数,在(﹣∞,0)上递减,在(0,+∞)上递增
D.偶函数,在(﹣∞,0)上递增,在(0,+∞)上递减

查看答案和解析>>

科目: 来源: 题型:

【题目】 是5个正实数(可以相等).

证明:一定存在4个互不相同的下标 ,使得

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数),在极坐标系中,直线的方程为: ,直线的方程为

(Ⅰ)写出曲线的直角坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点, 与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]在平面坐标系中xOy中,已知直线l的参考方程为(t为参数),曲线C的参数方程为(s为参数)。设p为曲线C上的动点,求点P到直线l的距离的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

同步练习册答案