相关习题
 0  257661  257669  257675  257679  257685  257687  257691  257697  257699  257705  257711  257715  257717  257721  257727  257729  257735  257739  257741  257745  257747  257751  257753  257755  257756  257757  257759  257760  257761  257763  257765  257769  257771  257775  257777  257781  257787  257789  257795  257799  257801  257805  257811  257817  257819  257825  257829  257831  257837  257841  257847  257855  266669 

科目: 来源: 题型:

【题目】某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:

甲种手机供电时间(小时)

乙种手机供电时间(小时)

(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;

(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部,记所抽部手机供电时间不小于小时的个数为,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题共12分)

如图,边长为3的正方形所在平面与等腰直角三角形所在平面互相垂直, ,且 .

(Ⅰ)求证: 平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:sinθ=ρcos2θ,过点M(﹣1,2)的直线l: (t为参数)与曲线C相交于A、B两点.求:
(1)线段AB的长度;
(2)点M(﹣1,2)到A、B两点的距离之积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.

(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线;

(2)若函数在其定义域内为增函数,求正实数的取值范围;

(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险峰种的投保人称为续保人,续保人的本年度的保费与其上处度的出险次数的关联如下:

设该险种一续保人一年内出险次数与相应概率如下:

(1) 求一续保人本年度的保费高于基本保费的概率;

(2) 若一续保人本年度的保费高于基本保费用,求其保费比基本保费高出60%的概率;

(3) 求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四个结论:
直线l经过定点(0,-2);
②若直线l在x轴和y轴上的截距相等,则 =1;
∈[1, 4+3 ]时,直线l的倾斜角q∈[120°,135°];
④当 ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为
其中正确结论的是(填上你认为正确的所有序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( ).
A.x+y-5=0
B.2x-y-1=0
C.2y-x-4=0
D.2x+y-7=0

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的左右顶点分别为A(﹣2,0),B(2,0),椭圆上除A、B外的任一点C满足kACkBC=﹣

(1)求椭圆C的标准方程;
(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N,在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明现由.

查看答案和解析>>

同步练习册答案