相关习题
 0  257740  257748  257754  257758  257764  257766  257770  257776  257778  257784  257790  257794  257796  257800  257806  257808  257814  257818  257820  257824  257826  257830  257832  257834  257835  257836  257838  257839  257840  257842  257844  257848  257850  257854  257856  257860  257866  257868  257874  257878  257880  257884  257890  257896  257898  257904  257908  257910  257916  257920  257926  257934  266669 

科目: 来源: 题型:

【题目】已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,则A中所有元素之和等于

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

已知函数,函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若不等式上恒成立,求实数a的取值范围;

(Ⅲ)若,求证:不等式: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的分数三角形,称为“莱布尼茨三角形”.这个三角形的规律是:各行中的每一个数,都等于后面一行中与它相邻的两个数之和(例如第4行第2个数 等于第5行中的第2个数 与第3个数 之和).则
在“莱布尼茨三角形”中,第10行从左到右第2个数到第8个数中各数的倒数之和为(

A.5010
B.5020
C.10120
D.10130

查看答案和解析>>

科目: 来源: 题型:

【题目】2016年某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计60吨厨余垃圾,假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分别为x,y,z,其中x>0,x+y+z=60,则数据x,y,z的标准差的最大值为 . (注:方差 ,其中 为x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分10分)选修4—5:不等式选讲

设函数f(x)=|2x﹣7|+1.

(Ⅰ)求不等式f(x)≤x的解集;

(Ⅱ)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采取随机抽样的方法抽取了名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为组: ,得到如图所示的频率分布直方图:

1)写出的值;

2)求抽取的名学生中月上网次数不少于次的学生的人数;

3)在抽取的名学生中,从月上网次数少于次的学生中随机抽取人,求至少抽取到名男生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学从区间[﹣1,1]随机抽取2n个数x1 , x2 , …,xn , y1 , y2 , …,yn , 构成n个数对(x1 , y1),(x2 , y2),…(xn , yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有个.

查看答案和解析>>

科目: 来源: 题型:

【题目】假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从700袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将700袋牛奶按001,002,…,700进行编号,如果从随机数表第3行第1组数开始向右读,最先读到的5袋牛奶的编号是614,593,379,242,203,请你以此方式继续向右读数,随后读出的3袋牛奶的编号是 . (下列摘取了随机数表第1行至第5行)

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:
①由样本数据得到的回归方程 必过样本点的中心( );
②用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好;
③若线性回归方程为 =3﹣2.5x,则变量x每增加1个单位时,y平均减少2.5个单位;
④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小.
上述四个命题中,正确命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l: (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(1)若点M的直角坐标为(2, ),直线l与曲线C交于A、B两点,求|MA|+|MB|的值;
(2)设曲线C经过伸缩变换 得到曲线C′,求曲线C′的内接矩形周长的最大值.

查看答案和解析>>

同步练习册答案