相关习题
 0  257830  257838  257844  257848  257854  257856  257860  257866  257868  257874  257880  257884  257886  257890  257896  257898  257904  257908  257910  257914  257916  257920  257922  257924  257925  257926  257928  257929  257930  257932  257934  257938  257940  257944  257946  257950  257956  257958  257964  257968  257970  257974  257980  257986  257988  257994  257998  258000  258006  258010  258016  258024  266669 

科目: 来源: 题型:

【题目】下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根据以上样本数据,她建立了身高 (cm)与年龄x(周岁)的线性回归方程为 ,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是 cm;
④儿子年龄增加1周岁,身高约增加 cm.
其中,正确结论的个数是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司今年一月份推出新产品A,其成本价为492元/件,经试销调查,销售量与销售价的关系如下表:

销售价(x/元件)

650

662

720

800

销售量(y件)

350

333

281

200

由此可知,销售量y(件)与销售价x(元/件)可近似看作一次函数y=kx+b的关系(通常取表中相距较远的两组数据所得一次函数较为精确).
(1)写出以x为自变量的函数y的解析式及定义域;
(2)试问:销售价定为多少时,一月份销售利润最大?并求最大销售利润和此时的销售量.

查看答案和解析>>

科目: 来源: 题型:

【题目】海上某货轮在A处看灯塔B在货轮的北偏东75°,距离为12海里;在A处看灯塔C在货轮的北偏西30°,距离为8海里;货轮向正北由A处行驶到D处时看灯塔B在货轮的北偏东120°.(要画图)
(1)A处与D处之间的距离;
(2)灯塔C与D处之间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】设f(x)是定义在(﹣1,+∞)内的增函数,且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】下列各组函数表示同一函数的是(
A. 与y=x+3
B. 与y=x﹣1
C.y=x0(x≠0)与y=1(x≠0)
D.y=2x+1,x∈Z与y=2x﹣1,x∈Z

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定点A(0,1),B(0,﹣1),C(1,0),动点P满足:

(1)求动点P的轨迹方程,并说明方程表示的曲线类型;

(2)当k=2,求的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,
(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零.

查看答案和解析>>

科目: 来源: 题型:

【题目】经市场调查:生产某产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)= x2+x(万元),在年产量不小于8万件时,W(x)=6x+ ﹣38(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;
(2)写出当产量为多少时利润最大,并求出最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】有下列说法: ①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程 ,可以估计和观测变量的取值和变化趋势;④因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确命题的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案