科目: 来源: 题型:
【题目】如图所示,某公路 一侧有一块空地 ,其中 , .当地政府拟在中间开挖一个人工湖△OMN,其中M,N都在边AB上(M,N不与A,B重合,M在A,N之间),且∠MON=30°.
(1)若M在距离A点2 km处,求点M,N之间的距离;
(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线上任意一点到直线的距离比到点的距离大1.
(1)求曲线的方程;
(2)过曲线的焦点,且倾斜角为的直线交于点(在轴上方), 为的准线,点在上且,求到直线的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设a是实数,f(x)=a﹣ (x∈R).
(1)证明不论a为何实数,f(x)均为增函数;
(2)若f(x)满足f(﹣x)+f(x)=0,解关于x的不等式f(x+1)+f(1﹣2x)>0.
查看答案和解析>>
科目: 来源: 题型:
【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.
(1)求直线的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:
(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;
(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根.
(1)若“¬p”为假命题,求m范围;
(2)若“p或q”为真命题,“p且q”为假命题,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一次水下考古活动中,某一潜水员需潜水50米到水底进行考古作业,其用氧量包含以下三个方面:
①下潜平均速度为米/分钟,每分钟的用氧量为升;
②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.3升;
③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升;潜水员在此次考古活动中的总用氧量为升.
(1)如果水底作业时间是10分钟,将表示为的函数;
(2)若,水底作业时间为20分钟,求总用氧量的取值范围;
(3)若潜水员携带氧气13.5升,请问潜水员最多在水下多少分钟(结果取整数)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com