科目: 来源: 题型:
【题目】已知函数f(x)= 为偶函数.
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5﹣ ,判断λ与E的关系;
(3)当x∈[ , ](m>0,n>0)时,若函数f(x)的值域为[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=﹣1,对任意x∈R都有f(x)≥x﹣1,且f(﹣ +x)=f(﹣ ﹣x).
(1)求函数f(x)的解析式;
(2)是否存在实数a,使函数g(x)=log [f(a)]x在(﹣∞,+∞)上为减函数?若存在,求出实数a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[ , ]且f(x0)≤g(x0)成立,求 的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数g(x)= +lnx在[1,+∞)上为增函数,且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上为单调函数,求m的取值范围;
(Ⅲ)设h(x)= ,若在[1,e]上至少存在一个x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z
查看答案和解析>>
科目: 来源: 题型:
【题目】设 ,g(x)=x3﹣x2﹣3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的 ,都有f(s)≥g(t)成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)写出曲线的参数方程和直线的普通方程;
(2)已知点是曲线上一点,求点到直线的最小距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论中恒成立的个数为( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com