相关习题
 0  258067  258075  258081  258085  258091  258093  258097  258103  258105  258111  258117  258121  258123  258127  258133  258135  258141  258145  258147  258151  258153  258157  258159  258161  258162  258163  258165  258166  258167  258169  258171  258175  258177  258181  258183  258187  258193  258195  258201  258205  258207  258211  258217  258223  258225  258231  258235  258237  258243  258247  258253  258261  266669 

科目: 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线 的左顶点为A,若双曲线一条渐近线与直线AM平行,则实数a等于(
A.
B.
C.3
D.9

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数fA(x)的定义域为A=[a,b),且fA(x)=( + ﹣1)2 +1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2 , (k+1)2),x2∈Ik+1=[(k+1)2 , (k+2)2),其中k是正整数,对一切正整数k,不等式 (x1)+ (x2))<m都有解,求m的取值范围;
(3)若对任意x1 , x2 , x3∈A,都有 为三边长构成三角形,求 的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知F1 , F2为椭圆 的左、右焦点,F2在以 为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.

(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

温差x(℃)

8

11

12

13

10

发芽数y(颗)

16

25

26

30

23

设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注:
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=3x2+2(k﹣1)x+k+5.
(1)求函数f(x)在[0,3]上最大值;
(2)若函数f(x)在[0,3]上有零点,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)=
(1)求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a、b∈(B∩RA)时,证明: |.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直三棱柱中, 的中点,△是等腰三角形, 的中点, 上一点;

(1)若∥平面,求

(2)平面将三棱柱分成两个部分,求含有点的那部分体积;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)是否存在实数t,使不等式f(x﹣t)+f(x2﹣t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案