相关习题
 0  258150  258158  258164  258168  258174  258176  258180  258186  258188  258194  258200  258204  258206  258210  258216  258218  258224  258228  258230  258234  258236  258240  258242  258244  258245  258246  258248  258249  258250  258252  258254  258258  258260  258264  258266  258270  258276  258278  258284  258288  258290  258294  258300  258306  258308  258314  258318  258320  258326  258330  258336  258344  266669 

科目: 来源: 题型:

【题目】已知函数f(x)=ax+xlnx(a∈R)
(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;
(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(

7

9

8

4

4

6

4

7

9

3


A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1)是定义域R上的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a2x﹣4f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C过点M(0,﹣2),N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PB⊥面ABCD,BA=BD= ,AD=2,E,F分别是棱AD,PC的中点.

(1)证明:EF∥平面PAB;
(2)若二面角P﹣AD﹣B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.

年级名次
是否近视

1~50

951~1000

近视

41

32

不近视

9

18

附:P(K2≥3.841=0.05)K2=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是平行四边形,平面平面 的中点.

(1)求证: 平面

(2)求证:平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线的极坐标方程为,曲线的参数方程为,( 为参数).

(1)将两曲线化成普通坐标方程;

(2)求两曲线的公共弦长及公共弦所在的直线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.

(1)证明:B1C⊥AB;
(2)若AC⊥AB1 , ∠CBB1=60°,BC=2,求B1到平面ABC的距离.

查看答案和解析>>

同步练习册答案