科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.![]()
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=
,三棱锥P﹣ABD的体积V=
,求A到平面PBC的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】设双曲线
的离心率e=2,右焦点为F(c,0),方程ax2+bx﹣c=0的两个实根分别为x1和x2 , 则点P(x1 , x2) 满足( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=2上
D.以上三种情形都有可能
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点P(0,﹣1)是椭圆C1:
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1 , l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D. ![]()
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的各项均为正数,其前n项的和为Sn , 且对任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n .
(1)求
的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an , p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp , Rp , 且Tp=Rp , 求证:对任意正整数k(1≤k≤p),ck=dk .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1 , y1),B(x2 , y2)两点,直线AF,BF分别与抛物线交于点M,N. ![]()
(1)求y1y2的值;
(2)记直线MN的斜率为k1 , 直线AB的斜率为k2 . 证明:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若P为椭圆
=1上任意一点,F1 , F2为左、右焦点,如图所示. ![]()
(1)若PF1的中点为M,求证:|MO|=5﹣
|PF1|;
(2)若∠F1PF2=60°,求|PF1||PF2|之值;
(3)椭圆上是否存在点P,使
=0,若存在,求出P点的坐标,若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com