科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的离心率为
,左、右焦点分别为F1 , F2 , 点G在椭圆C上,且
=0,△GF1F2的面积为2. ![]()
(1)求椭圆C的方程;
(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1 , k2 , 当
最大时,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AD⊥AB,AB∥DC,PA⊥底面ABCD,点E为棱PC的中点.AD=DC=AP=2AB=2. ![]()
(1)证明:BE⊥平面PDC;
(2)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AD﹣C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是 .
①任意x∈R,都有3x>2x;
②若a>0,且a≠1,M>0,N>0,则有loga(M+N)=logaMlogaN;
③
的最大值为1;
④在同一坐标系中,y=2x与
的图象关于y轴对称.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[m,n]上有( )
A.最小值f(m)
B.最大值f(n)
C.最小值f(n)
D.最大值 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点F为抛物线E:y2=2px(p>0)的焦点,点A(3,m)在抛物线E上,且|AF|=4. ![]()
(1)求抛物线E的方程;
(2)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的首项a1=
,an+1=
,n∈N* .
(1)求证:数列{
﹣1}为等比数列;
(2)记Sn=
+
+…+
,若Sn<100,求满足条件的最大正整数n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com