科目: 来源: 题型:
【题目】端午节小长假期间,张洋与几位同学从天津乘火车到大连去旅游,若当天从天津到大连的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响,则这三列火车恰好有两列正点到达的概率是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】现有某批次同一型号的产品共10件,其中有8件合格品,2件次品.
(Ⅰ)某检验员从中有放回地连续抽取产品2次,每次随机抽取1件,求两次都取到次品的概率;
(Ⅱ)若该检验员从中任意抽取2件,用X表示取出的2件产品中次品的件数,求X的分布列.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为
和
.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为
=
(单位:万元),其中
是产品售出的数量(单位:百件).
(1)该公司这种产品的年产量为
百件,生产并销售这种产品所得到的利润为当年产量
的函数
,求
;
(2)当年产量是多少时,工厂所得利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=
,g(x)=a(x+b)(0<a≤1,b≤0).
(1)讨论函数y=f(x)g(x)的奇偶性;
(2)当b=0时,判断函数y=
在(﹣1,1)上的单调性,并说明理由;
(3)设h(x)=|af2(x)﹣
|,若h(x)的最大值为2,求a+b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点. ![]()
(1)求证:|EA|+|EB|为定值;
(2)证明:设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).
![]()
(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,如图.
![]()
(1)求证:平面AB1D1∥平面C1BD;
(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明:A1E=EF=FC.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,ABCD-A1B1C1D1是正方体,在图①中E,F分别是D1C1,B1B的中点,画出图①、②中有阴影的平面与平面ABCD的交线,并给出证明.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com