相关习题
 0  258662  258670  258676  258680  258686  258688  258692  258698  258700  258706  258712  258716  258718  258722  258728  258730  258736  258740  258742  258746  258748  258752  258754  258756  258757  258758  258760  258761  258762  258764  258766  258770  258772  258776  258778  258782  258788  258790  258796  258800  258802  258806  258812  258818  258820  258826  258830  258832  258838  258842  258848  258856  266669 

科目: 来源: 题型:

【题目】如图所示,四棱锥中,底面为矩形, 平面 ,点的中点.

)求证: 平面

)求证:平面平面

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数= .

(1)是否存在实数使函数是奇函数?并说明理由;

(2)(1)的条件下,, 恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积SAOB= 时,求椭圆的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在上的函数满足:对任意恒成立,当时,.

1求证上是单调递增函数;

2已知,解关于的不等式

3,且不等式对任意恒成立.求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,给出下列结论:

(1)若对任意,且,都有,则为R上的减函数;

(2)若为R上的偶函数,且在内是减函数, (-2)=0,则>0解集为(-2,2);

(3)若为R上的奇函数,则也是R上的奇函数;

(4)t为常数,若对任意的,都有关于对称。

其中所有正确的结论序号为_________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)确定a与b的关系;
(2)若a≥0,试讨论函数g(x)的单调性.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设z1 , z2是复数,给出下列四个命题: ①若|z1﹣z2|=0,则 = ②若z1= ,则 =z2
③若|z1|=|z2|,则z1 =z2 ④若|z1|=|z2|,则z12=z22
其中真命题的序号是

查看答案和解析>>

科目: 来源: 题型:

【题目】提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)

的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0;当

车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,

车流速度是车流密度的一次函数.

(1)当时,求函数的表达式;

(2)如果车流量(单位时间内通过桥上某观测点的车辆数) (单位:辆/小时),那么当车流密度为多大时,车流量可以达到最大,并求出最大值.(精确到辆/小时).

查看答案和解析>>

同步练习册答案