科目: 来源: 题型:
【题目】如图,
是圆柱的母线,
是
的直径,
是底面圆周上异于
的任意一点,
,
.
![]()
(1)求证: ![]()
(2)当三棱锥
的体积最大时,求
与平面
所成角的大小;
(3)
上是否存在一点
,使二面角
的平面角为45°?若存在,求出此时
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为![]()
![]()
(1)求频率分布图中
的值,并估计该企业的职工对该部门评分不低于80的概率;
(2)从评分在
的受访职工中,随机抽取2人,求此2人评分都在
的概率..
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下面三个类比结论:
①向量
,有|
|2=
2;类比复数z,有|z|2=z2
②实数a,b有(a+b)2=a2+2ab+b2;类比向量
,
,有(
)2=
2
2
③实数a,b有a2+b2=0,则a=b=0;类比复数z1 , z2 , 有z12+z22=0,则z1=z2=0
其中类比结论正确的命题个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,且满足
.
(1)判断函数
在
上的单调性,并用定义证明;
(2)设函数
,求
在区间
上的最大值;
(3)若存在实数m,使得关于x的方程
恰有4个不同的正根,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M:
和点
,动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B,C在曲线E上,若直线AB,AC的斜率分别是k1 , k2 , 满足k1k2=9,求△ABC面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】过点(0,2)的直线l与中心在原点,焦点在x轴上且离心率为
的椭圆C相交于A、B两点,直线
过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称.
(1)求直线l的方程;
(2)求椭圆C的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接2017年“双11”,“双12”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共100个,生产一个汤碗需5分钟,生产一个花瓶需7分钟,生产一个茶杯需4分钟,已知总生产时间不超过10小时.若生产一个汤碗可获利润5元,生产一个花瓶可获利润6元,生产一个茶杯可获利润3元.
(1)使用每天生产的汤碗个数x与花瓶个数y表示每天的利润ω(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBE,DAG和ECF,其中
、
与
分别相切于点D、E,且
与
无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米),草坪面积为S(单位:百米2).
(1)试用x分别表示扇形DAG和DBE的面积,并写出x的取值范围;
(2)当x为何值时,草坪面积最大?并求出最大面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com