科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点P(0,1)在圆C:x2+y2+2mx﹣2y+m2﹣4m+1=0内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,直线l的参数方程为
(t为参数,
),以坐标原点o为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线 ![]()
(1)若直线l曲线
相交于点
,
,
,证明:
为定值;
(2)将曲线
上的任意点
作伸缩变换
后,得到曲线
上的点
,求曲线
的内接矩形
周长的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M:
与
轴相切.
(1)求
的值;
(2)求圆M在
轴上截得的弦长;
(3)若点
是直线
上的动点,过点
作直线
与圆M相切,
为切点,求四边形
面积的最小值.
【答案】(1)
(2)
(3) ![]()
【解析】试题分析:(1)先将圆的一般方程化成标准方程,利用直线和圆相切进行求解;(2) 令
,得到关于
的一元二次方程进行求解;(3)将四边形的面积的最小值问题转化为点到直线的的距离进行求解.
试题解析:(1)
∵圆M:
与
轴相切
∴
∴
(2) 令
,则
∴
∴
(3) ![]()
∵
的最小值等于点
到直线
的距离,
∴
∴![]()
∴四边形
面积的最小值为
.
【题型】解答题
【结束】
20
【题目】在平面直角坐标系
中,圆
的方程为
,且圆
与
轴交于
,
两点,设直线
的方程为
.
![]()
(1)当直线
与圆
相切时,求直线
的方程;
(2)已知直线
与圆
相交于
,
两点.
(ⅰ)若
,求实数
的取值范围;
(ⅱ)直线
与直线
相交于点
,直线
,直线
,直线
的斜率分别为
,
,
,
是否存在常数
,使得
恒成立?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在数列{an}中,an=cos
(n∈N*)
(1)试将an+1表示为an的函数关系式;
(2)若数列{bn}满足bn=1﹣
(n∈N*),猜想an与bn的大小关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)由直线
的斜率为
,可得所求直线的斜率为
,代入点斜式方程,可得答案;(2)直线
与两坐标轴的交点分别为
,则所围成的三角形的面积为
,根据直线
与两坐标轴所围成的三角形的面积为大于
,构造不等式,解得答案.
试题解析:(1)与直线l垂直的直线的斜率为-2,
因为点(2,3)在该直线上,所以所求直线方程为y-3=-2(x-2),
故所求的直线方程为2x+y-7=0.
(2) 直线l与两坐标轴的交点分别为(-2m+2,0),(0,m-1),
则所围成的三角形的面积为
×|-2m+2|×|m-1|.
由题意可知
×|-2m+2|×|m-1|>4,化简得(m-1)2>4,
解得m>3或m<-1,
所以实数m的取值范围是(-∞,-1)∪(3,+∞).
【方法点睛】本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题. 对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)
;(2)
,这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.
【题型】解答题
【结束】
18
【题目】在平面直角坐标系
中,已知经过原点O的直线
与圆
交于
两点。
(1)若直线
与圆
相切,切点为B,求直线
的方程;
(2)若
,求直线
的方程;
查看答案和解析>>
科目: 来源: 题型:
【题目】某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A、B两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》.
(1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率;
(2)若从A、B两组中各任选2人,设X为选出的4人中选听《生活趣味数学》的人数,求X的分布列和数学期望E(X).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)根据中点坐标公式求出
中点
的坐标,根据斜率公式可求得
的斜率,利用点斜式可求
边上的中线所在直线的方程;(2)先根据斜率公式求出
的斜率,从而求出
边上的高所在直线的斜率为
,利用点斜式可求
边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k=
=8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k=
=1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com