相关习题
 0  258870  258878  258884  258888  258894  258896  258900  258906  258908  258914  258920  258924  258926  258930  258936  258938  258944  258948  258950  258954  258956  258960  258962  258964  258965  258966  258968  258969  258970  258972  258974  258978  258980  258984  258986  258990  258996  258998  259004  259008  259010  259014  259020  259026  259028  259034  259038  259040  259046  259050  259056  259064  266669 

科目: 来源: 题型:

【题目】已知 在椭圆C: 上,F为右焦点,PF⊥垂直于x轴,A,B,C,D为椭圆上的四个动点,且AC,BD交于原点O.
(1)求椭圆C的方程;
(2)判断直线l: 与椭圆的位置关系;
(3)设A(x1 , y1),B(x2 , y2)满足 = ,判断kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数为定义域上的单调函数,且存在区间(其中,使得当时,的取值范围恰为,则称函数上的正函数,区间叫做函数的等域区间

(1)已知上的正函数,求的等域区间

(2)试探求是否存在,使得函数上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】

为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本(元)与月处理量(吨)之间的函数关系可以近似的表示为:,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.

(I)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;

(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)= (e是自然对数的底数),f(x)的图象在x=﹣ 处的切线方程为y=
(1)求a,b的值;
(2)探究直线y= .是否可以与函数g(x)的图象相切?若可以,写出切点的坐标,否则,说明理由;
(3)证明:当x∈(﹣∞,2]时,f(x)≤g(x).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,直角梯形ACDE与等腰直角三角形ABC所在平面互相垂直,F为BC的中点,, ,.

(1)求证:平面平面;

(2)求证:平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三棱锥 ,底面 是以 为直角顶点的等腰直角三角形, ,二面角 的大小为 .

(1)求直线 与平面 所成角的大小;
(2)求二面角 的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=
(1)证明:f(x)+|f(x)﹣2|≥2;
(2)当x≠﹣1时,求y= 的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:

购买食品的年支出费用x(万元)

2.09

2.15

2.50

2.84

2.92

购买水果和牛奶的年支出费用y(万元)

1.25

1.30

1.50

1.70

1.75

根据上表可得回归直线方程 ,其中 ,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为(
A.1.79万元
B.2.55万元
C.1.91万元
D.1.94万元

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为 ,且它的一个焦点 的坐标为 .
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过焦点 的直线与椭圆相交于 两点, 是椭圆上不同于 的动点,试求 的面积的最大值.

查看答案和解析>>

同步练习册答案