相关习题
 0  258946  258954  258960  258964  258970  258972  258976  258982  258984  258990  258996  259000  259002  259006  259012  259014  259020  259024  259026  259030  259032  259036  259038  259040  259041  259042  259044  259045  259046  259048  259050  259054  259056  259060  259062  259066  259072  259074  259080  259084  259086  259090  259096  259102  259104  259110  259114  259116  259122  259126  259132  259140  266669 

科目: 来源: 题型:

【题目】(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,的中点,直线相交于点.

1)求圆的方程;

2)当时,求直线的方程.

3是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

【答案】

【解析】

由条件椭圆

椭圆的右焦点为F,可知F(1,0),

设点A的坐标为(2m),则=1m),

B的坐标为

B在椭圆C上,

,解得:m=1

A的坐标为(21),.

答案为: .

型】填空
束】
16

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】 ,则实数的取值范围为__________

【答案】

【解析】m=0时,符合题意。

m≠0, ,则0<m<4

0m<4

答案为: .

点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:

一是,开口;

二是,对称轴,主要讨论对称轴与区间的位置关系;

三是,判别式,决定于x轴的交点个数;

四是,区间端点值.

型】填空
束】
15

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

查看答案和解析>>

科目: 来源: 题型:

【题目】一台风中心在港口南偏东方向上,距离港口千米处的海面上形成,并以每小时千米的速度向正北方向移动,距台风中心千米以内的范围将受到台风的影响,则港口受到台风影响的时间为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】到点 及到直线的距离都相等,如果这样的点恰好只有一个,那么实数的值是( )

A. B. C. D.

【答案】D

【解析】试题分析:由题意知在抛物线上,设,则有,化简得,当时,符合题意;当时,,有,则,所以选D

考点:1、点到直线的距离公式;2、抛物线的性质.

【方法点睛】本题考查抛物线的概念、性质以及数形结合思想,属于中档题,到点和直线的距离相等,则的轨迹是抛物线,再由直线与抛物线的位置关系可求;抛物线的定义是解决物线问题的基础,它能将两种距离(抛物线上的点到到焦点的距离、抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线的定义就能解决.

型】单选题
束】
13

【题目】在极坐标系中,已知两点 ,则 两点间的距离为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若函数是奇函数,求实数的值;

(2)在(1)的条件下,判断函数与函数的图象公共点个数,并说明理由;

(3)当时,函数的图象始终在函数的图象上方,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为双曲线 的右焦点,过坐标原点的直线依次与双曲线的左、右支交于点,若 ,则该双曲线的离心率为(

A. B. C. D.

【答案】B

【解析】,设双曲线的左焦点为连接,由对称性可知, 为矩形,且故选B.

方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.

型】单选题
束】
12

【题目】到点 及到直线的距离都相等,如果这样的点恰好只有一个,那么实数的值是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:

温度(单位:℃)

21

23

24

27

29

32

死亡数(单位:株)

6

11

20

27

57

77

经计算:.

其中分别为试验数据中的温度和死亡株数,

(1)是否有较强的线性相关性? 请计算相关系数(精确到)说明.

(2)并求关于的回归方程(都精确到);

(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据,……,

线性相关系数通常情况下当大于0.8时,认为两

个变量有很强的线性相关性

其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列的首项,公差.且分别是等比数列的第2、3、4项

(1)求数列的通项公式;

(2)设数列满足的值(结果保留指数形式).

查看答案和解析>>

科目: 来源: 题型:

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
11

【题目】如图,四棱锥中, 平面,底面为直角梯形, ,点在棱上,且,则平面与平面的夹角的余弦值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案