科目: 来源: 题型:
【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若
的坐标为
,求
的值;
(2)设线段
的中点为
,点
的坐标为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
两点,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代名词“刍童”原来是草堆的意思,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上袤,下袤从之,亦倍下袤,上袤从之,各以其广乘之,并,以高乘之,皆六而一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘,将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一.已知一个“刍童”的下底面是周长为18的矩形,上底面矩形的长为3,宽为2,“刍童”的高为3,则该“刍童”的体积的最大值为
A.
B.
C. 39 D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在边长为2的正方形
中,
,
分别为
,
的中点,
为
的中点,沿
,
,
将正方形折起,使
,
,
重合于点
,在构成的三棱锥
中,下列结论错误的是
![]()
A.
平面![]()
B. 三棱锥
的体积为![]()
C. 直线
与平面
所成角的正切值为![]()
D. 异面直线
与
所成角的余弦值为![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为
元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过
人时,飞机票每张收费
元;若旅行团的人数多于
人时,则予以优惠,每多
人,每个人的机票费减少
元,但旅行团的人数最多不超过
人.设旅行团的人数为
人,飞机票价格
元,旅行社的利润为
元.
(1)写出飞机票价格
元与旅行团人数
之间的函数关系式;
(2)当旅行团人数
为多少时,旅行社可获得最大利润?求出最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l的参数方程为
(t为参数),在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线M的方程为ρ2(1+sin2θ)=1.
(1)求曲线M的直角坐标方程;
(2)若直线l与曲线M只有一个公共点,求倾斜角α的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的正半轴为极轴建立极坐标系,直线
的参数方程为
,曲线
的极坐标方程为
.
(1)写出直线
的直角坐标方程和曲线
的普通方程;
(2)求直线
与曲线
的交点的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G. ![]()
(1)求证:EF=EG;
(2)求线段MG的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
,圆心为
,定点
,
为圆
上一点,线段
上一点
满足
,直线
上一点
,满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)
为坐标原点,
是以
为直径的圆,直线
与
相切,并与轨迹
交于不同的两点
.当
且满足
时,求
面积
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低
元,根据市场调查,销售商一次订购不会超过600件.
(1)设一次订购
件,服装的实际出厂单价为
元,写出函数
的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com