相关习题
 0  259189  259197  259203  259207  259213  259215  259219  259225  259227  259233  259239  259243  259245  259249  259255  259257  259263  259267  259269  259273  259275  259279  259281  259283  259284  259285  259287  259288  259289  259291  259293  259297  259299  259303  259305  259309  259315  259317  259323  259327  259329  259333  259339  259345  259347  259353  259357  259359  259365  259369  259375  259383  266669 

科目: 来源: 题型:

【题目】已知二次函数f(x)的图象过点(0,4),对任意x满足f(3﹣x)=f(x),且f(1)=2.

(1)若f(x)在(a,2a﹣1)上单调递减,求实数a的取值范围.

(2)设函数h(x)=f(x)﹣(2t﹣3)x,其中t∈R,求h(x)在区间[0,1]上的最小值g (t).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF与平面ABC所成角α的余弦值;
(2)若G为BC的中点,A1G与平面AEF交于H,且设 = ,求λ的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:

i

1

2

3

4

5

合计

xi(百万元)

1.26

1.44

1.59

1.71

1.82

7.82

wi(百万元)

2.00

2.99

4.02

5.00

6.03

20.04

yi(百万元)

3.20

4.80

6.50

7.50

8.00

30.00

=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi2=0.20, (wi2=10.14

其中
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);

(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列{an}的前n项和是Sn , 若点An(n, )在函数f(x)=﹣x+c的图象上运动,其中c是与x无关的常数,且a1=3(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=a ,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)当时,求函数上的最大值;

(2)若函数处有极小值,求实数的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有

(1)的值;

(2)求证:对任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

科目: 来源: 题型:

【题目】设f(x)=x3+mlog2(x+ )(m∈R,m>0),则不等式f(m)+f(m2﹣2)≥0的解是 . (注:填写m的取值范围)

查看答案和解析>>

科目: 来源: 题型:

【题目】微信支付诞生于微信红包,早期知识作为社交的一部分“发红包”而诞生的,在发红包之余才发现,原来微信支付不仅可以用来发红包,还可以用来支付,现在微信支付被越来越多的人们所接受,现从某市市民中随机抽取300为对是否使用微信支付进行调查,得到下列的列联表:

年轻人

非年轻人

总计

经常使用微信支付

165

225

不常使用微信支付

合计

90

300

根据表中数据,我们得到的统计学的结论是:由__________的把握认为“使用微信支付与年龄有关”。

其中

查看答案和解析>>

同步练习册答案