科目: 来源: 题型:
【题目】函数f(x)是这样定义的:对于任意整数m,当实数x满足不等式|x﹣m|<
时,有f(x)=m.
(1)求函数f(x)的定义域D,并画出它在x∈D∩[0,3]上的图象;
(2)若数列an=2+10(
)n , 记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,上顶点为
,若直线
的斜率为1,且与椭圆的另一个交点为
,
的周长为
.
(1)求椭圆的标准方程;
(2)过点
的直线
(直线
的斜率不为1)与椭圆交于
两点,点
在点
的上方,若
,求直线
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
![]()
(1)求a的值,并计算所抽取样本的平均值
(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
附表及公式: ![]()
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sinx,若存在x1 , x2 , …,xn满足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),当m取最小值时,n的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在区间(0,+∞)上的函数f(x)满足f(
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
查看答案和解析>>
科目: 来源: 题型:
【题目】湖南省某自来水公司每个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨2元收取;当该用户用水量超过30吨但不超过50吨时,超出部分按每吨3元收取;当该用户用水量超过50吨时,超出部分按每吨4元收取。
(1)记某用户在一个收费周期的用水量为
吨,所缴水费为
元,写出
关于
的函数解析式;
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为214元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知三棱柱
,侧面
.
(Ⅰ)若
分别是
的中点,求证:
;
(Ⅱ)若三棱柱
的各棱长均为2,侧棱
与底面
所成的角为
,问在线段
上是否存在一点
,使得平面
?若存在,求
与
的比值,若不存在,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com