科目: 来源: 题型:
【题目】已知动点
到定点
的距离和它到直线
的距离的比值为常数
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若直线
与曲线
相交于不同的两点
,
,直线
与曲线
相交于不同的两点
,且
,求以
,
,
,
为顶点的凸四边形的面积
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的两个焦点分别为
,
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)设椭圆
的左顶点为
,过点
的直线
与椭圆
相交于异于
的不同两点
,求
的面积
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
关于
轴对称,顶点在坐标原点
,直线
经过抛物线
的焦点.
(1)求抛物线
的标准方程;
(2)若不经过坐标原点
的直线
与抛物线
相交于不同的两点
,
,且满足
,证明直线
过
轴上一定点
,并求出点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:
网购金额 (单位:千元) | 频数 | 频率 |
| 3 |
|
|
|
|
| 9 |
|
| 15 |
|
| 18 |
|
|
|
|
合计 | 60 |
|
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为
.
(1)确定
,
,
,
的值,并补全频率分布直方图;
![]()
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知以坐标原点
为圆心的圆与抛物线
相交于不同的两点
,
,与抛物线
的准线相交于不同的两点
,
,且
.
(1)求抛物线
的方程;
(2)若不经过坐标原点
的直线
与抛物线
相交于不同的两点
,
,且满足
.证明直线
过定点
,并求出点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了
至
月份每月
号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 |
|
|
|
|
|
|
昼夜温差 |
|
|
|
|
|
|
就诊人数 |
|
|
|
| 16 |
|
该兴趣小组确定的研究方案是:先从这六组数据中选取
组,用剩下的
组数据求线性回归方程,再用被选取的
组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是
月与
月的两组数据,请根据
至
月份的数据,求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过
人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题
:若关于
的方程
无实数根,则
;命题
:若关于
的方程
有两个不相等的正实数根,则
.
(1)写出命题
的否命题,并判断命题
的真假;
(2)判断命题“
且
”的真假,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:![]()
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com