相关习题
 0  259285  259293  259299  259303  259309  259311  259315  259321  259323  259329  259335  259339  259341  259345  259351  259353  259359  259363  259365  259369  259371  259375  259377  259379  259380  259381  259383  259384  259385  259387  259389  259393  259395  259399  259401  259405  259411  259413  259419  259423  259425  259429  259435  259441  259443  259449  259453  259455  259461  259465  259471  259479  266669 

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,设倾斜角为的直线为参数与曲线为参数相交于不同的两点.

1,求线段中点的坐标;

2,其中,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比.

(1)设圆求过2,0的直线关于圆的距离比的直线方程;

(2)若圆轴相切于点0,3)且直线= 关于圆的距离比,求此圆的的方程;

(3)是否存在点,使过的任意两条互相垂直的直线分别关于相应两圆的距离比始终相等?若存在,求出相应的点点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;


2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);

(3)由直方图估计男生身高的中位数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数定义在上且满足下列两个条件:

①对任意都有;

②当时,有

(1)求,并证明函数上是奇函数;

(2)验证函数是否满足这些条件;

(3)若,试求函数的零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】随着节假日外出旅游人数增多,倡导文明旅游的同时,生活垃圾处理也面临新的挑战,某海滨城市沿海有三个旅游景点,在岸边两地的中点处设有一个垃圾回收站点(如图),两地相距10,从回收站观望地和地所成的视角为,且,设

(1)用分别表示,并求出的取值范围;

(2)某一时刻太阳与三点在同一直线,此时地到直线的距离为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)求f(2),f(x);

(2)证明:函数f(x)在[1,17]上为增函数;

(3)试求函数f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《最强大脑》是江苏卫视推出国内首档大型科学类真人秀电视节目,该节目集结了国内外最顶尖的脑力高手,堪称脑力界的奥林匹克,某校为了增强学生的记忆力和辨识力也组织了一场类似《最强大脑》的PK赛,A、B两队各由4名选手组成,每局两队各派一名选手PK,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分,假设每局比赛两队选手获胜的概率均为0.5,且各局比赛结果相互独立.
(1)求比赛结束时A队的得分高于B队的得分的概率;
(2)求比赛结束时B队得分X的分布列和期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(分及以上为及格)和平均数?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形的长为2,宽为1 边分别在轴、轴的正半轴上, 点与坐标原点重合,将矩形折叠,使点落在线段上,设此点为.

(1)若折痕的斜率为-1,求折痕所在的直线的方程;

(2)若折痕所在直线的斜率为,( 为常数),试用表示点的坐标,并求折痕所在的直线的方程;

(3)当时,求折痕长的最大值.

查看答案和解析>>

同步练习册答案