相关习题
 0  259392  259400  259406  259410  259416  259418  259422  259428  259430  259436  259442  259446  259448  259452  259458  259460  259466  259470  259472  259476  259478  259482  259484  259486  259487  259488  259490  259491  259492  259494  259496  259500  259502  259506  259508  259512  259518  259520  259526  259530  259532  259536  259542  259548  259550  259556  259560  259562  259568  259572  259578  259586  266669 

科目: 来源: 题型:

【题目】已知.

(1)设 ,若函数存在零点,求的取值范围;

(2)若是偶函数,设,若函数的图象只有一个公共点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)确定a的所有可能取值,使得f(x)> ﹣e1x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】函数的部分图像如图所示,为最高点,该图像与轴交于点轴交于点,且的面积为

(1)求函数的解析式;

(2)将函数的图像向右平移个单位,再将所得图像上各点的横坐标伸长为原来的倍,纵坐标不变,得到函数的图像,求上的单调递增区间。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知五面体,其中内接于圆是圆的直径,四边形为平行四边形,且平面

(1)证明:平面平面

(2)若,且二面角所成角的余弦值为,试求该几何体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E: =1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.
(1)求椭圆E的方程及点T的坐标;
(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA||PB|,并求λ的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2= ,证明:e1+e2++en

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且 + =
(1)证明:sinAsinB=sinC;
(2)若b2+c2﹣a2= bc,求tanB.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,倾斜角为α的直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.

(1)写出直线l的普通方程和曲线C的直角坐标方程;

(2)已知点P(1,0).若点M的极坐标为,直线l经过点M且与曲线C相交于AB两点,设线段AB的中点为Q,求|PQ|的值.

查看答案和解析>>

同步练习册答案