科目: 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)确定a的所有可能取值,使得f(x)>
﹣e1﹣x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
查看答案和解析>>
科目: 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入
种黄瓜的年收入
与投入
(单位:万元)满足
.设甲大棚的投入为
(单位:万元),每年两个大棚的总收益为
(单位:万元)
(1)求
的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益
最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】函数
的部分图像如图所示,
为最高点,该图像与
轴交于点
与
轴交于点
,且
的面积为
.
![]()
(1)求函数
的解析式;
(2)将函数
的图像向右平移
个单位,再将所得图像上各点的横坐标伸长为原来的
倍,纵坐标不变,得到函数
的图像,求
在
上的单调递增区间。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知五面体
,其中
内接于圆
,
是圆
的直径,四边形
为平行四边形,且
平面
.
![]()
(1)证明:
平面
平面
;
(2)若
,
,且二面角
所成角
的余弦值为
,试求该几何体
的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E:
=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.
(1)求椭圆E的方程及点T的坐标;
(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N* .
(1)若2a2 , a3 , a2+2成等差数列,求an的通项公式;
(2)设双曲线x2﹣
=1的离心率为en , 且e2=
,证明:e1+e2++en>
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°. ![]()
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且
+
=
.
(1)证明:sinAsinB=sinC;
(2)若b2+c2﹣a2=
bc,求tanB.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,倾斜角为α
的直线l的参数方程为
(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)已知点P(1,0).若点M的极坐标为
,直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com