科目: 来源: 题型:
【题目】在△ABC 内部取n 个点, 将△ABC剖分为若干个小三角形(每两个小三角形或者有一个公共顶点,或者有一条公共边,或者完全没有公共点,如图所示).现将点A 染红色, 点B 染蓝色,点C 染黑色,其余n 个点的每个点也任意染上红、蓝、黑三色之一.我们称三个顶点的颜色恰为红、蓝、黑的小三角形为“特征三角形”.证明:至少有一个小三角形是特征三角形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=
,BC=BB1=2.
![]()
(Ⅰ)求证:AC⊥平面ABB1A1;
(Ⅱ)求点D到平面ABC1的距离d.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛.下图(1)和下图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按
,
,
,
分组,得到的频率分布直方图.
![]()
(1)请计算高一年级和高二年级成绩小于60分的人数;
(2)完成下面
列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?
![]()
附:临界值表及参考公式:
,
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题p:x∈(1,+∞),
>1;命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,则下列命题为真命题的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
科目: 来源: 题型:
【题目】某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=emx+x2﹣mx(m∈R).
(1)当m=1时,求函数f(x)的单调区间;
(2)若m<0,且曲线y=f(x)在点(1,f(1))处的切线与直线x+(e+1)y=0垂直.
(i)当x>0时,试比较f(x)与f(﹣x)的大小;
(ii)若对任意x1 , x2(x1≠x2),且f(x1)=f(x2),证明:x1+x2<0.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,依次连接椭圆的四个顶点得到的菱形面积为4.
(1)求椭圆的方程;
(2)过点
且斜率为
的直线
交椭圆
于
,
两点,设
与
面积之比为
(其中
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点F1 , F2在轴上,焦距为2,离心率为
.
(1)求椭圆C的方程;
(2)若P是椭圆C上第一象限内的点,△PF1F2的内切圆的圆心为I,半径为
.求:
(i)点P的坐标;
(ii)直线PI的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com