相关习题
 0  259418  259426  259432  259436  259442  259444  259448  259454  259456  259462  259468  259472  259474  259478  259484  259486  259492  259496  259498  259502  259504  259508  259510  259512  259513  259514  259516  259517  259518  259520  259522  259526  259528  259532  259534  259538  259544  259546  259552  259556  259558  259562  259568  259574  259576  259582  259586  259588  259594  259598  259604  259612  266669 

科目: 来源: 题型:

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?

(3)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为:为参数,),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程.

(1)①当时,写出直线的普通方程;

②写出曲线的直角坐标方程;

(2)若点,设曲线与直线交于点,求最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直线平行

(Ⅰ)求的值;

(Ⅱ)是否存在自然数,使得方程内存在唯一的根?如果存在,求出;如果不存在,请说明理由。

(Ⅲ)设函数表示中的较小者),求的最大值。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的左右焦点分别为 ,左顶点为,上顶点为 的面积为.

(1)求椭圆的方程;

(2)设直线 与椭圆相交于不同的两点 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点均在圆上.

(1)求圆的方程;

(2)若直线与圆相交于两点,求的长;

(3)设过点的直线与圆相交于两点,试问:是否存在直线,使得以为直径的圆经过原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:

(Ⅰ)完成所给的频率分布直方图,并求的值;

(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校的学生文娱团队由理科组和文科组构成,具体数据如表所示:

组别

文科

理科

性别

男生

女生

男生

女生

人数

3

1

3

2

学校准备从该文娱团队中选出4人到某社区参加大型公益活动演出,每选出一名男生,给其所在的组记1分;每选出一名女生,给其所在的组记2分,要求被选出的4人中文科组和理科组的学生都有.
(I)求理科组恰好得4分的概率;
(II)记文科组的得分为X,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 ,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0而是它的一个均值点. 例如y=|x|是[﹣2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=sinx﹣1是[﹣π,π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0
③若函数f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函数”,则实数m∈(﹣2,0);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0
其中的真命题有(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案