相关习题
 0  259495  259503  259509  259513  259519  259521  259525  259531  259533  259539  259545  259549  259551  259555  259561  259563  259569  259573  259575  259579  259581  259585  259587  259589  259590  259591  259593  259594  259595  259597  259599  259603  259605  259609  259611  259615  259621  259623  259629  259633  259635  259639  259645  259651  259653  259659  259663  259665  259671  259675  259681  259689  266669 

科目: 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图)

表中.

(1)根据散点图判断,哪一个更适宜作价格关于时间的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立关于的回归方程;

(3)若该产品的日销售量(件)与时间的函数关系为),求该产品投放市场第几天的销售额最高?最高为多少元?(结果保留整数)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目: 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目: 来源: 题型:

【题目】在下列命题中,①的一个充要条件是与它的共轭复数相等:

②利用独立性检验来考查两个分类变量是否有关系,当随机变量的观测值值越大,“有关系”成立的可能性越大;

③在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好;

④若是两个相等的实数,则是纯虚数;

⑤某校高三共有个班,班有人,班有人,班有人,由此推测各班都超过人,这个推理过程是演绎推理.

其中真命题的序号为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】在公园游园活动中有这样一个游戏项目:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和2个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中:①求摸出3个白球的概率;②求获奖的概率;
(2)在两次游戏中,记获奖次数为X:①求X的分布列;②求X的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的极小值;

(2)若函数个零点,求实数的取值范围;

(3)在(2)的条件下,若函数的三个零点分别为,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函数h(x)图象上任意两点,且满足 >1,求实数a的取值范围;
(3)若x∈(0,1],使f(x)≥ 成立,求实数a的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用克的药剂,药剂在血液中的含量随着时间小时变化的函数关系式近似为,其中

若病人一次服用9克的药剂,则有效治疗时间可达多少小时?

若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在数列{an}中,已知a1=2,an+1=3an+2n﹣1.
(1)求证:数列{an+n}为等比数列;
(2)记bn=an+(1﹣λ)n,且数列{bn}的前n项和为Tn , 若T3为数列{Tn}中的最小项,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某城市小区有一个矩形休闲广场,AB=20米,广场的一角是半径为16米的扇形BCE绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN(宽度不计),点M在线段AD上,并且与曲线CE相切;另一排为单人弧形椅沿曲线CN(宽度不计)摆放.已知双人靠背直排椅的造价每米为2a元,单人弧形椅的造价每米为a元,记锐角∠NBE=θ,总造价为W元.
(1)试将W表示为θ的函数W(θ),并写出cosθ的取值范围;
(2)如何选取点M的位置,能使总造价W最小.

查看答案和解析>>

同步练习册答案