相关习题
 0  259532  259540  259546  259550  259556  259558  259562  259568  259570  259576  259582  259586  259588  259592  259598  259600  259606  259610  259612  259616  259618  259622  259624  259626  259627  259628  259630  259631  259632  259634  259636  259640  259642  259646  259648  259652  259658  259660  259666  259670  259672  259676  259682  259688  259690  259696  259700  259702  259708  259712  259718  259726  266669 

科目: 来源: 题型:

【题目】某中学在“三关心”(即关心家庭、关心学校、关心社会)的专题中,对个税起征点问题进行了学习调查.学校决定从高一年级800人,高二年级1000人,高三年级800人中按分层抽样的方法共抽取13人进行谈话,其中认为个税起征点为3000元的有3人,认为个税起征点为4000元的有6人,认为个税起征点为 5000元的有4人.

(1)求高一年级、高二年级、高三年级分别抽取多少人?

(2)从13人中选出3人,求至少有1人认为个税起征点为4000元的概率;

(3)记从13人中选出3人中认为个税起征点为4000元的人数为,求的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:

销售单价/元

9

9.5

10

10.5

11

销售量/万件

11

10

8

6

5

(1)根据表中数据,建立关于的回归方程;

(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元/件(其中),那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)

参考数据:.

参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线C: (a>0,b>0)的左、右焦点分别为F1 , F2 , 点M与双曲线C的焦点不重合,点M关于F1 , F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|﹣|BN|=12,则a=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目: 来源: 题型:

【题目】将函数f(x)=2sin(ωx+ )(ω>0)的图象向右平移 个单位,得到函数y=g(x)的图象,若y=g(x)在[﹣ ]上为增函数,则ω的最大值为(
A.3
B.2
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.

1)记函数上的偶函数为事件,求事件的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△中,已知,直线经过点

(Ⅰ)若直线:与线段交于点,且为△的外心,求△的外接圆的方程;

(Ⅱ)若直线方程为,且△的面积为,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDABADACCD,∠ABC=60°,PAABBCEPC的中点.

(1)证明:AE⊥平面PCD

(2)求二面角APDC的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )

A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病

C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病

查看答案和解析>>

同步练习册答案