相关习题
 0  259590  259598  259604  259608  259614  259616  259620  259626  259628  259634  259640  259644  259646  259650  259656  259658  259664  259668  259670  259674  259676  259680  259682  259684  259685  259686  259688  259689  259690  259692  259694  259698  259700  259704  259706  259710  259716  259718  259724  259728  259730  259734  259740  259746  259748  259754  259758  259760  259766  259770  259776  259784  266669 

科目: 来源: 题型:

【题目】厦门市从2003年起每年都举行国际马拉松比赛,每年马拉松比赛期间,都会吸引许多外地游客到厦门旅游,这将极大地推进厦门旅游业的发展,旅游部门将近六年马拉松比赛期间外地游客数量统计如下表:

年份

2012

2013

2014

2015

2016

2017

比赛年份编号

外地游客人数(万人)

(1)若用线性回归模型拟合的关系,求关于的线性回归方程;(精确到

(2)若用对数回归模型拟合的关系,可得回归方程,且相关指数,请用相关指数说明选择哪个模型更合适.(精确到

参考数据:

参考公式:回归方程中,;相关指数.

查看答案和解析>>

科目: 来源: 题型:

【题目】执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

科目: 来源: 题型:

【题目】设实数c>0,整数p>1,n∈N*
(1)证明:当x>﹣1且x≠0时,(1+x)p>1+px;
(2)数列{an}满足a1 ,an+1= an+ an1p . 证明:an>an+1

查看答案和解析>>

科目: 来源: 题型:

【题目】随机调查名性别不同的大学生是否喜欢打羽毛球,得到如下列联表:

总计

喜欢打羽毛球

不喜欢打羽毛球

总计

临界值表:

参考公式:(其中

参照临界值表,下列结论正确的是(

A. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”

B. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”

C. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”

D. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)求此四棱柱被平面α所分成上下两部分的体积之比;
(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2 , l1与E1 , E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.

(1)证明:A1B1∥A2B2
(2)过O作直线l(异于l1 , l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2 , 求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

广告投入/万元

1

2

3

4

5

销售收益/万元

2

3

2

5

7

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;

(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:

表中的数据显示之间存在线性相关关系,求关于的回归方程;

(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的最小正周期是,且在区间上单调递减.

(1)求函数的解析式;

(2)若关于的方程

上有实数解,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)讨论f(x)在其定义域上的单调性;
(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.

查看答案和解析>>

同步练习册答案