相关习题
 0  259613  259621  259627  259631  259637  259639  259643  259649  259651  259657  259663  259667  259669  259673  259679  259681  259687  259691  259693  259697  259699  259703  259705  259707  259708  259709  259711  259712  259713  259715  259717  259721  259723  259727  259729  259733  259739  259741  259747  259751  259753  259757  259763  259769  259771  259777  259781  259783  259789  259793  259799  259807  266669 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线.设圆的半径为1,圆心在上.

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;

(2)若圆心上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,,点在线段上.过点于点,将沿折起到的位置(点重合),使得.

(Ⅰ)求证:.

(Ⅱ)试问:当点在线段上移动时,二面角的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列 是递增数列;
p4:数列{an+3nd}是递增数列;
其中真命题是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆C: 的左右焦点分别是F1 , F2 , 离心率为 ,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1 , PF2 , 设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1 , PF2的斜率分别为k1 , k2 , 若k≠0,试证明 为定值,并求出这个定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).

(1)分别计算按这两种方案所建的仓库的体积;

(2)分别计算按这两种方案所建的仓库的表面积;

(3)哪个方案更经济些?

查看答案和解析>>

科目: 来源: 题型:

【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线,和圆相切,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列满足: ,且.

1)求证:数列是等比数列;

2)设是数列的前项和,若对任意都成立.试求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼的时间/分钟

总人数

20

36

44

50

40

10

将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面的列联表;

课外体育不达标

课外体育达标

合计

20

110

合计

(2)通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”性别有关?

参考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案