相关习题
 0  259657  259665  259671  259675  259681  259683  259687  259693  259695  259701  259707  259711  259713  259717  259723  259725  259731  259735  259737  259741  259743  259747  259749  259751  259752  259753  259755  259756  259757  259759  259761  259765  259767  259771  259773  259777  259783  259785  259791  259795  259797  259801  259807  259813  259815  259821  259825  259827  259833  259837  259843  259851  266669 

科目: 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱(侧棱垂直于底面)中,.

(1)证明:平面

(2)若的中点,在线段上是否存在一点使平面?若存在,请确定点的位置;若不存在,也请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点为F1 , F2 , 离心率为 ,点A,B在椭圆上,F1在线段AB上,且△ABF2的周长等于4
(1)求椭圆C的标准方程;
(2)过圆O:x2+y2=4上任意一点P作椭圆C的两条切线PM和PN与圆O交于点M,N,求△PMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),,以原点为极点,轴正半轴为极轴建立极坐标系,圆极坐标方程为.

(1)若直线与圆相切,求的值;

(2)已知直线与圆交于两点,记点相应的参数分别为,当时,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:

组别

PM2.5浓度
(微克/立方米)

频数(天)

频率

第一组

(0,25]

3

0.15

第二组

(25,50]

12

0.6

第三组

(50,75]

3

0.15

第四组

(75,100]

2

0.1


(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图. ①求图4中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

查看答案和解析>>

同步练习册答案