科目: 来源: 题型:
【题目】已知函数f(x)=
﹣m(lnx+
)(m为实数,e=2.71828…是自然对数的底数). (Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在(
,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】为改善居民的生活环境,政府拟将一公园进行改造扩建,已知原公园是直径为200米的半圆形,出入口在圆心
处,
为居民小区,
的距离为200米,按照设计要求,以居民小区
和圆弧上点
为线段向半圆外作等腰直角三角形
(
为直角顶点),使改造后的公园成四边形
,如图所示.
![]()
(1)若
时,
与出入口
的距离为多少米?
(2)
设计在什么位置时,公园
的面积最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增大,下表是该地一农业银行连续五年的储蓄存款(年底余额),如下表:
![]()
为了研究方便,工作人员将上表的数据进行了处理,
,得到下表:
![]()
(1)求
关于
的线性回归方程;
(2)求
关于
的线性回归方程;
(3)用所求回归方程预测,到2020年底,该地储蓄存款额大约可达多少?
(附:线性回归方程:
,
,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P(1,
)在椭圆上,连接PF1交y轴于点Q,点Q满足
=
.直线l不过原点O且不平行于坐标轴,l与椭圆C有两个交点A,B. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点M(
,0),若直线l过椭圆C的右焦点F2 , 证明:
为定值;
(Ⅲ)若直线l过点(0,2),设N为椭圆C上一点,且满足
+
=λ
,求实数λ的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和Sn=
(an﹣1),数列{bn}满足bn+2=2bn+1﹣bn , 且b6=a3 , b60=a5 , 其中n∈N*. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(﹣1)nbnbn+1 , 求数列{cn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标
和
,制成下图,其中“*”表示男同学,“+”表示女同学.
![]()
若
,则认定该同学为“初级水平”,若
,则认定该同学为“中级水平”,若
,则认定该同学为“高级水平”;若
,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.
(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;
(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;
(Ⅲ)试比较这100名同学中,男、女生指标
的方差的大小(只需写出结论).
查看答案和解析>>
科目: 来源: 题型:
【题目】某重点中学100位学生在市统考中的理科综合分数,以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(1)求直方图中
的值;
(2)求理科综合分数的众数和中位数;
(3)在理科综合分数为
,
,
,
的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在
的学生中应抽取多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com