科目: 来源: 题型:
【题目】2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世界杯比赛,得到以下列联表:
观看世界杯 | 不观看世界杯 | 总计 | |
男 | 40 | 20 | 60 |
女 | 15 | 25 | 40 |
总计 | 55 | 45 | 100 |
经计算的观测值.
附表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,所得结论正确的是( )
A. 有以上的把握认为“该小区居民是否观看世界杯与性别有关”
B. 有以上的把握认为“该小区居民是否观看世界杯与性别无关”
C. 在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”
D. 在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”
查看答案和解析>>
科目: 来源: 题型:
【题目】设F1 , F2是双曲线C: (a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于( )
A.2
B.1
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.
(1)求数列{an}的通项公式;
(2)求数列{}的前n项和Tn,并证明Tn<.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()
(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.
(1)若甲投篮3次,求至少命中2次的概率;
(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)计算的值;
(Ⅲ)设函数,试讨论函数在区间 [0,3] 上的零点个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com