相关习题
 0  259824  259832  259838  259842  259848  259850  259854  259860  259862  259868  259874  259878  259880  259884  259890  259892  259898  259902  259904  259908  259910  259914  259916  259918  259919  259920  259922  259923  259924  259926  259928  259932  259934  259938  259940  259944  259950  259952  259958  259962  259964  259968  259974  259980  259982  259988  259992  259994  260000  260004  260010  260018  266669 

科目: 来源: 题型:

【题目】设椭圆E: 的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1 , F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=ax﹣(1+a2)x2 , 其中a>0,区间I={x|f(x)>0}
(1)求I的长度(注:区间(a,β)的长度定义为β﹣α);
(2)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位实行职工值夜班制度,已知名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若昨天值夜班,从今天起至少连续天不值夜班,星期四值夜班,则今天是星期几(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0, ]上的单调性.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C经过P(4,-2)Q(13)两点,且圆心C在直线xy10上.

(1)求圆C的方程;

(2)若直线lPQ,且l与圆C交于点AB且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知函数的图像与直线相切,其中是自然对数的底数.

(1)求实数的值;

(2)设函数在区间内有两个极值点.

①求实数的取值范围;

②设函数的极大值和极小值的差为,求实数的取值范围 .

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解我市特色学校的发展状况,某调查机构得到如下统计数据:

年份

2014

2015

2016

2017

2018

特色学校(百个)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根据上表数据,计算的相关系数,并说明的线性相关性强弱(已知:,则认为线性相关性很强;,则认为线性相关性一般;,则认为线性相关性较弱);

(Ⅱ)求关于的线性回归方程,并预测我市2019年特色学校的个数(精确到个).

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,∠ABC=BCD=90°,EPB的中点。

1)证明:CE∥面PAD.

2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且过点.为椭圆的右焦点, 为椭圆上关于原点对称的两点,连结并延长,分别交椭圆于两点.

(1)求椭圆的标准方程;

(2)设直线的斜率分别为,是否存在实数,使得?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案