科目: 来源: 题型:
【题目】(2015·上海)如图,圆锥的顶点为P,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点. 已知PO=2,OA=1,求三棱锥P-AOC的体积,并求异面直线PA与OE所成角的大小.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:
过点P且离心率为
.
![]()
(1)求C1的方程;
(2)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg)其频率分布直方图如下:
![]()
(1) 记
表示事件“旧养殖法的箱产量低于50kg”,估计
的概率;
(2)填写下面联表,并根据列联表判断是否有
%的把握认为箱产量与养殖方法有关:
箱产量 | 箱产量 | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列命题:
①若函数
满足
,则函数
的图象关于直线
对称;
②点
关于直线
的对称点为
;
③通过回归方程
可以估计和观测变量的取值和变化趋势;
④正弦函数是奇函数,
是正弦函数,所以
是奇函数,上述推理错误的原因是大前提不正确.
其中真命题的序号是__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C
,直线
(
为参数)
(1)写出曲线C的参数方程和直线l的普通方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件 时,有A1C⊥B1D1 . (注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分12分)已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com