科目: 来源: 题型:
【题目】各项均为正数的数列{bn}的前n项和为Sn , 且对任意正整数n,都有2Sn=bn(bn+1).
(1)求数列{bn}的通项公式;
(2)如果等比数列{an}共有2015项,其首项与公比均为2,在数列{an}的每相邻两项ak与ak+1之间插入k个(﹣1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}中所有项的和;
(3)如果存在n∈N* , 使不等式
成立,求实数λ的范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标方程;曲线
的极坐标方程。
(2)当曲线
与曲线
有两个公共点时,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题:①函数
的值域是
;
②为了得到函数
的图象,只需把函数
图象上的所有点向右平移
个单位长度;
③当
或
时,幂函数
的图象都是一条直线;
④已知函数
,若
互不相等,且
,则
的取值范围是
.
其中正确的命题个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目: 来源: 题型:
【题目】高三某班有60名学生(其中女生有20名),三好学生占
,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,已知直线
:
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设点
的极坐标为
,直线
与曲线
的交点为
,
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.
(1)若蛋糕店每天做20个生日蛋糕,求当天的利润
(单位:元)关于当天生日蛋糕的需求量
(单位:个,
)的函数关系;
(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:
![]()
(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;
(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
求分数在[120,130)内的频率,并补全这个频
率分布直方图;
统计方法中,同一组数据常用该组区间的中点
值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数,
),以原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的普通方程和曲线
的直角坐标方程;
(2)已知点
是曲线
上一点,若点
到曲线
的最小距离为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a≥3,函数F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)= ![]()
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范围
(2)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com