相关习题
 0  259905  259913  259919  259923  259929  259931  259935  259941  259943  259949  259955  259959  259961  259965  259971  259973  259979  259983  259985  259989  259991  259995  259997  259999  260000  260001  260003  260004  260005  260007  260009  260013  260015  260019  260021  260025  260031  260033  260039  260043  260045  260049  260055  260061  260063  260069  260073  260075  260081  260085  260091  260099  266669 

科目: 来源: 题型:

【题目】函数内只取到一个最大值和一个最小值,且当时,;当时,.

(1)求函数的解析式.

(2)求函数的单调递增区间.

(3)是否存在实数,满足不等式?若存在,求出的范围(或值);若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个结论:

①从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的

2个数均为偶数”,则

②某班共有45名学生,其中30名男同学,15名女同学,老师随机抽查了5名同学的作业,用表示抽查到的女生的人数,则

③设随机变量服从正态分布,则

④由直线,曲线轴所围成的图形的面积是.

其中所有正确结论的序号为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥P﹣ABCD中,设底面ABCD是边长为1的正方形,PA⊥面ABCD.

(1)求证:PC⊥BD;
(2)过BD且与直线PC垂直的平面与PC交于点E,当三棱锥E﹣BCD的体积最大时,求二面角E﹣BD﹣C的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)(exa)2(exa)2(a≥0)

(1)f(x)表示成u(其中u)的函数;

(2)f(x)的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)

平均每天锻炼
的时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

总人数

20

36

44

50

40

10

将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

课外体育不达标

课外体育达标

合计

20

110

合计

参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.

查看答案和解析>>

科目: 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目: 来源: 题型:

【题目】2017年10月9日,教育部考试中心下发了《关于年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.鞍山市教育部门积极回应,编辑传统文化教材,在全是范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了位市民进行了解,发现支持开展的占,在抽取的男性市民人中支持态度的为人.

支持

不支持

合计

男性

女性

合计

(1)完成列联表

(2)判断是否有的把握认为性别与支持有关?

附:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果函数上存在满足,则称函数是在上的“双中值函数”,已知函数上的“双中值函数”,则函数的取值范围是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC中, (0<λ<1),cosC= ,cos∠ADC=
(1)若AC=5.BC=7,求AB的大小;
(2)若AC=7,BD=10,求△ABC的面积.

查看答案和解析>>

同步练习册答案