相关习题
 0  260004  260012  260018  260022  260028  260030  260034  260040  260042  260048  260054  260058  260060  260064  260070  260072  260078  260082  260084  260088  260090  260094  260096  260098  260099  260100  260102  260103  260104  260106  260108  260112  260114  260118  260120  260124  260130  260132  260138  260142  260144  260148  260154  260160  260162  260168  260172  260174  260180  260184  260190  260198  266669 

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=2sin2x+2 sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)在区间 上的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】△ABC中,内角A,B,C的对边分别为a,b,c,2sin2 =sinC+1.
(Ⅰ)求角C的大小;
(Ⅱ)若a= ,c=1,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】要得到函数f(x)=2sinxcosx,x∈R的图象,只需将函数g(x)=2cos2x﹣1,x∈R的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目: 来源: 题型:

【题目】有以下命题:

若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};

若函数f(x)是偶函数,则f(|x|)=f(x);

若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;

若函数fx)存在反函数f1x),且f1x)与fx)不完全相同,则fx)与f1x)图象的公共点必在直线y=x上;

其中真命题的序号是 .(写出所有真命题的序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

610

女大学生

90

合计

800

(1)根据题意完成表格;

(2)是否有的把握认为愿意做志愿者工作与性别有关?

查看答案和解析>>

科目: 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列四个命题中,真命题的序号有 .(写出所有真命题的序号)

,则成立的充分不必要条件;

命题使得的否定是均有

命题,则的否命题是,则

函数在区间上有且仅有一个零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义域为R的奇函数f(x)满足f(4﹣x)+f(x)=0,当﹣2<x<0时,f(x)=2x , 则f(log220)=(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设O为坐标原点,点P的坐标为

(1)若在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;

(2)若利用计算机随机在[0,3]上先后取两个数分别记为x,y,求P点在第一象限的概率;

(3)从原点O出发的某质点,按向量移动的概率为,按向量移动的概率为,求可到达点的概率.

查看答案和解析>>

同步练习册答案