科目: 来源: 题型:
【题目】已知a>0且a≠1,设命题p:函数y=loga(x-1)在(1,+∞)上单调递减,命题q:曲线y=x2+(a-2)x+4与x轴交于不同的两点.若“p且q”为真命题,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】若命题p:函数y=x2﹣2x的单调递增区间是[1,+∞),命题q:函数y=x﹣ 的单调递增区间是[1,+∞),则( )
A.p∧q是真命题
B.p∨q是假命题
C.非p是真命题
D.非q是真命题
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)在x=-2处有极值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}中,a1=3,a2=5,{an}的前n项和Sn , 且满足Sn+Sn﹣2=2Sn﹣1+2n﹣1(n≥3).
(1)试求数列{an}的通项公式;
(2)令bn= ,Tn是数列{bn}的前n项和,证明:Tn< ;
(3)证明:对任意给定的m∈(0, ),均存在n0∈N+ , 使得当n≥n0时,(2)中的Tn>m恒成立.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知两动圆F1:(x+ )2+y2=r2和F2:(x﹣ )2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A,B满足: =0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=2x+a2﹣x , 其中常数a≠0.
(1)当a=1时,f(x)的最小值;
(2)当a=256时,是否存在实数k∈(1,2],使得不等式f(k﹣cosx)≥f(k2﹣cos2x)对任意x∈R恒成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A(2,8)在抛物线上,直线l和抛物线交于B,C两点,焦点F是三角形ABC的重心,M是BC的中点(不在x轴上)
(1)求M点的坐标;
(2)求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sinxcos(x﹣ )+cos2x﹣ .
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,使用纸板可以折叠粘贴制作一个形状为正六棱柱形状的花型锁盒盖的纸盒.
(1)求该纸盒的容积;
(2)如果有一张长为60cm,宽为40cm的矩形纸板,则利用这张纸板最多可以制作多少个这样的纸盒(纸盒必须用一张纸板制成).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1 , O2 . 动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1 , O,O2 , B五点共线),记点P运动的路程为x,设y=|O1P|2 , y与x的函数关系为y=f(x),则y=f(x)的大致图象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com