科目: 来源: 题型:
【题目】已知函数f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函数f(x)在x=2处取得极值.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为i,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为i+k或i+k-10(i+k≥10),则当i=7时,所抽取的第6个号码是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )
A. 平均数为14,方差为5 B. 平均数为13,方差为25
C. 平均数为13,方差为5 D. 平均数为14,方差为2
查看答案和解析>>
科目: 来源: 题型:
【题目】生产某种产品q个单位时成本函数为C(q)=200+0.05q2,求:
(1)生产90个单位该产品时的平均成本;
(2)生产90个到100个单位该产品时,成本的平均变化率;
(3)生产第100个单位该产品时,成本的变化率.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列的首项,且,,.
(Ⅰ)证明:是等比数列;
(Ⅱ)若,数列中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(Ⅲ)若是递增数列,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b), ∥ .
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+n.
(1)求数列{an}的通项公式an;
(2)数列{bn}满足bn= (n∈N*),求数列{bn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)= .
(1)求f(x)的最小正周期;
(2)求f(x)在[ , ]上的单调递增区间.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=( )1﹣x , 则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=( )x﹣3 .
其中所有正确命题的序号是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点, 是棱的中点, ,.
(1)求证:平面BDM; (2)D到面PBC距离;
(3)求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com