科目: 来源: 题型:
【题目】设函数f(x)=+k(+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知A(1,2,3),B(2,1,2),C(1,1,2),O为坐标原点,点D在直线OC上运动,则当·取最小值时,点D的坐标为( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆F1:(x+1)2+y2=1,圆F2:(x﹣1)2+y2=25,动圆P与圆F1外切并且与圆F2内切,动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若曲线C与x轴的交点为A1 , A2 , 点M是曲线C上异于点A1 , A2的点,直线A1M与A2M的斜率分别为k1 , k2 , 求k1k2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sinx(sinx+cosx).
(1)求f(x)的最小正周期和最大值;
(2)在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若f()=1,a=2 , 求三角形ABC面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】设S为复数集C的非空子集.如果
(1)S含有一个不等于0的数;
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,∈S,那么就称S是一个数域.
现有如下命题:
①如果S是一个数域,则0,1∈S;
②如果S是一个数域,那么S含有无限多个数;
③复数集是数域;
④S={a+b|a,b∈Q,}是数域;
⑤S={a+bi|a,b∈Z}是数域.
其中是真命题的有 (写出所有真命题的序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目: 来源: 题型:
【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com