科目: 来源: 题型:
【题目】已知 , 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列{an}中的项都满足a2n﹣1=a2n<a2n+1(n∈N*),则称{an}为“阶梯数列”.
(1)设数列{bn}是“阶梯数列”,且b1=1,b2n+1=9b2n﹣1(n∈N*),求b2016;
(2)设数列{cn}是“阶梯数列”,其前n项和为Sn , 求证:{Sn}中存在连续三项成等差数列,但不存在连续四项成等差数列;
(3)设数列{dn}是“阶梯数列”,且d1=1,d2n+1=d2n﹣1+2(n∈N*),记数列{ }的前n项和为Tn , 问是否存在实数t,使得(t﹣Tn)(t+ )<0对任意的n∈N*恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=lnx﹣ax(a∈R).
(1)若直线y=3x﹣1是函数f(x)图象的一条切线,求实数a的值;
(2)若函数f(x)在[1,e2]上的最大值为1﹣ae(e为自然对数的底数),求实数a的值;
(3)若关于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且仅有唯一的实数根,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.
(1)请确定入口F的选址范围;
(2)设商业区的面积为S1 , 绿化区的面积为S2 , 商业区的环境舒适度指数为 ,则入口F如何选址可使得该商业区的环境舒适度指数最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,| |=4, =12,E为AC的中点.
(1)若cos∠ABC= ,求△ABC的面积S△ABC;
(2)若 =2 ,求 的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.
(1)求抛物线方程;
(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com