科目: 来源: 题型:
【题目】在直角坐标系中xOy中,已知曲线E经过点P(1,
),其参数方程为
(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证:
为定值,并求出这个定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx,e为自然对数的底数.
(1)求曲线y=f(x)在x=e﹣2处的切线方程;
(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;
(3)关于x的方程f(x)=a有两个实根x1 , x2 , 求证:|x1﹣x2|<2a+1+e﹣2 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已成椭圆C:
=1(a>b>0)的左右顶点分别为A1、A2 , 上下顶点分别为B2/B1 , 左右焦点分别为F1、F2 , 其中长轴长为4,且圆O:x2+y2=
为菱形A1B1A2B2的内切圆.
(1)求椭圆C的方程;
(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN的面积不小于
n2 , 求n的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费. ![]()
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE=
,∠EAD=∠EAB. ![]()
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足nan+2﹣(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1对n∈N*恒成立,则实数λ的取值范围是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为( ) ![]()
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2
查看答案和解析>>
科目: 来源: 题型:
【题目】直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为( )
A.![]()
B.![]()
C.![]()
D.2 ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com