相关习题
 0  260625  260633  260639  260643  260649  260651  260655  260661  260663  260669  260675  260679  260681  260685  260691  260693  260699  260703  260705  260709  260711  260715  260717  260719  260720  260721  260723  260724  260725  260727  260729  260733  260735  260739  260741  260745  260751  260753  260759  260763  260765  260769  260775  260781  260783  260789  260793  260795  260801  260805  260811  260819  266669 

科目: 来源: 题型:

【题目】下列函数中,同时满足两个条件“①x∈R,f( +X)+f( -X)=0;②当﹣ <x< 时,f′(x)>0”的一个函数是(
A.f(x)=sin(2x+
B.f(x)=cos(2x+
C.f(x)=sin(2x﹣
D.f(x)=cos(2x﹣

查看答案和解析>>

科目: 来源: 题型:

【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系.设曲线C的参数方程为 (α是参数),直线l的极坐标方程为ρcos(θ+ )=2
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数发f(x)=(x+1)lnx﹣ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证: ,n∈N*

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C1 =1(a>b>0)的离心率e= ,且过点 ,直线l1:y=kx+m(m>0)与圆C2:(x﹣1)2+y2=1相切且与椭圆C1交于A,B两点. (Ⅰ)求椭圆C1的方程;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】正三棱柱ABC﹣A1B1C1底边长为2,E,F分别为BB1 , AB的中点. (I)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值为 ,求AA1的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:

与教育有关

与教育无关

合计

30

10

40

35

5

40

合计

65

15

80


(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”? 参考公式: (n=a+b+c+d).
附表:

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635


(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,设边a,b,c所对的角为A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 , 数列{ }的前n项和Tn , 若Tn<M对一切正整数n都成立,则M的最小值为

查看答案和解析>>

同步练习册答案