相关习题
 0  260636  260644  260650  260654  260660  260662  260666  260672  260674  260680  260686  260690  260692  260696  260702  260704  260710  260714  260716  260720  260722  260726  260728  260730  260731  260732  260734  260735  260736  260738  260740  260744  260746  260750  260752  260756  260762  260764  260770  260774  260776  260780  260786  260792  260794  260800  260804  260806  260812  260816  260822  260830  266669 

科目: 来源: 题型:

【题目】已知椭圆 抛物线 焦点均在 轴上, 的中心和 顶点均为原点 ,从每条曲线上各取两个点,将其坐标记录于表中,则 的左焦点到 的准线之间的距离为( )

A.
B.
C.1
D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等比数列 项和为 ,则下列一定成立的是( )
A.若 ,则
B.若 ,则
C.若 ,则
D.若 ,则

查看答案和解析>>

科目: 来源: 题型:

【题目】“抛物线 的准线方程为 ”是“抛物线 的焦点与双曲线 的焦点重合”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数,0≤α<π),以坐标原点O为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线C1:p=1.
(1)若直线l与曲线C1相交于点A,B,点M(1,1),证明:|MA||MB|为定值;
(2)将曲线C1上的任意点(x,y)作伸缩变换 后,得到曲线C2上的点(x',y'),求曲线C2的内接矩形ABCD周长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4.
(1)求抛物线E的方程;
(2)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四面体ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(1)求证:AC⊥BD;
(2)若二面角B﹣AC﹣D为45°,求直线AB与平面ACD所成的角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】当今信息时代,众多中小学生也配上了手机.某机构为研究经常使用手机是否对学习成绩有影响,在某校高三年级50名理科生第人的10次数学考成绩中随机抽取一次成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(60及60以上)

不及格

合计

很少使用手机

经常使用手机

合计


(2)从50人中,选取一名很少使用手机的同学(记为甲)和一名经常使用手机的同学(记为乙)解一道函数题,甲、乙独立解决此题的概率分别为P1 , P2 , P2=0.4,若P1﹣P2≥0.3,则此二人适合为学习上互帮互助的“对子”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“对子”? 参考公式及数据: ,其中n=a+b+c+d

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC= (acosB+bcosA).
(1)求角C;
(2)若c=2 ,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案